
Sharing is caring; Centralized PKI and masking for

multi-organization blockchain sharing

Lef Ioannidis

January 4, 2020

1 Introduction

Private blockchains are an oxymoron, neither
a fully decentralized blockchain nor a central-
ized database of transactions. They are only
viable as long as they keep the best of both
worlds; the scalability and automation found in
a blockchain, as well as a central point of cross-
cutting, high-level control across the entire sys-
tem. This document introduces Authoritarian, a
centralized Public Key Infrastructure (PKI) and
policy enforcing system, that allows multiple or-
ganizations to share one distributed ledger.

Authoritarianacts both as a gateway to
blockchain participation and a bootstrapping
system for new nodes. As the goals of Author-
itarianare relatively broad, some assumptions
were made in order to limit the search space of
possible design solutions. First, a universe of or-
ganizations share access to the same blockchain.
Those organizations can have logical subgroups
which might overlap and vaguely resemble Unix
user groups. The lowest order principal in Au-
thoritarianis a single node, which represents a
single machine in the organization. Nodes can
keep secrets from each other, which is why all
transaction metadata are stored anonymized and
encrypted. At the same time, exchanges can be
performed across organizations and verified by

all nodes, based on a set of policies specific to
the organization. Every transaction block will
be checked by a committee to verify the policies
have been withheld, the committee elected using
a proof-of-stake protocol. In addition, a policy
constraint solver can be fairly useful in detect-
ing logical errors in the declarative specification
using automatic reasoning, similar to AWS IAM
[1].

2 Design

Authoritarianis composed of two centralized ser-
vices; a name server(DNSSec) and an authen-
tication server(Auth), as well as a distributed
ledger. DNSSec and Auth handle bootstrapping,
naming, authentication, policy control and pri-
vacy. Both are globally accessible to all nodes,
either by VPN or the open internet. A VPN has
the advantage of a reduced attack surface, as well
as some useful non-repudiation properties for de-
tecting and blacklisting bad nodes. Conversely,
an open-internet approach is open to both un-
targeted and targeted attacks and susceptible
to a spectrum of DoS attacks as well. How-
ever, a VPN without unsafe entrypoints is an op-
erational assumption regarding the deployment
of the system and rather optimistic. Authori-

1



tarianhas end-to-end encryption build-in every-
where after bootstrapping and makes no assump-
tions regarding the underlying network topology.
The only assumptions we make are the even-
tual availability of the DNSSec and Auth servers,
as well as the reachability of at least 51% of
the nodes as is usually the case for distributed
ledgers.

2.1 Principals

Access control is defined in terms of princi-
pals. A three-tier hierarchy of organizations
(ON), groups (OU) and nodes (CN) allows for fine-
grained access control. Figure 1 shows the prin-
cipal hierarchy for Acme Inc, with two groups
and a total of five node machines. Every organi-
zation has a dedicated administrator (ON admin)
who implements the bootstrapping process.

A web-of-trust of X509 CAs guarantees end-
to-end encryption and non-repudiation across
principals. Bootstrapping gives Organizations
an intermediate CA and a dedicated DNS zone
in the DNSSec server and after that, individ-
ual nodes can authenticate with the organization
and automatically register and participate in Au-
thoritarian. New groups and nodes can issue cer-
tificates for themselves by proving ownership of a
DNSSec domain by completing a challenge, sim-
ilar to Let’s Encrypt certbot [2]. A secret will be
served on the node machine via HTTPS, if this
secret can be reached by the certbot querying
the DNS domain of the node, a client-certificate
will generated and signed by the ON intermedi-
ate CA.

2.2 Bootstrapping

A unique self-signed root CA is used to sign two
level-1 intermediate certificates for the Auth and

Organization: ON=Acme Inc

Group: OU=Wire transfers

Node: CN=xchg-1.acme.org

Node: CN=xchg-2.acme.org

Node: CN=xchg-3.acme.org

Group: OU=Sales

Node: CN=sales-1.acme.org

Node: CN=sales-2.acme.org

Figure 1: Principals tree; an organization with
two groups and five total nodes, each node is a
DNSSec domain

DNSSec servers, then stored offline in a safe, air-
gaped location. It will only be used again to
rotate the keys in Auth and DNSSec in an an-
nual or biannual basis. The ON admin has to
manually generate a Certificate signing request
(CSR) and have it signed by the Auth interme-
diate CA through a side-channel, in order to re-
ceive a level-2 intermediate CA for the ON.

Each organization is a logical namespace, rep-
resented by a unique DNS zone, *.acme.org in
1 for example. To bootstrap an organization,
a static DNS zone needs to be manually added
once, to the global DNSSec record. Assuming
that is done, nodes in this organization can reg-
ister under that zone themselves by using a Dyn-
DNS update command [3] authenticated by a
pluggable machine authentication protocol spec-
ified by the organization administrator.

An organization incorporates their internal
machine authentication policy to ensure no out-
side machines can register under their Zone.
This is usually done via a firewall. A rather
open firewall policy is to allow every machine
in the corporate IP subnet to send a DynDNS
update to the global DNSSec server. A better
one is to seed every machine with a UUID and
whitelist those UUIDs in the firewall, before al-

2



lowing DynDNS domain registration. In either
case, every organization identifies their machines
in a different way which is opaque to Authoritar-
ianbut familiar to the ON admin. It is crucial to
realize every machine that can register itself to
the DNSSec server will also be able to receive a
client-certificate from the Auth server and par-
ticipate in distributed consensus committees.

2.3 Enforcing policies

Policies in Authoritarianare specified in a declar-
ative language similar to AWS IAM policies [1].
Figure 2 shows a policy for hiding the transac-
tion history of one organization from their com-
petitors, while fig. 3 shows a policy for allowing
software engineers to get paid.

The Auth server stores all policies. For each
block, a new random committee is elected. Each
member of the committee will receive all rela-
tive policies from the Auth server and verify that
they have been enforced for each transaction in
a block, before committing it to the blockchain.
There are no meta-permissions in place, in other
words all policies in the system are publicly read-
able. Since it might not be ideal to send a pol-
icy to the principal from which it protects from,
the following heuristic is applied; A policy will
not be sent to a principal which it directly refer-
ences. For example, the policy in 2 will not be
sent to nodes in EvilCorp and thus will not leak
the existence of this rule.

3 Distributed Ledger

After authenticating, nodes can access the trans-
action log, perform transactions and be elected
in committees and vote for a new block. A com-
mittee is randomly selected and implements the

{
"Name": "Hide history from the

competition",

"Statement": {
"Effect": "Deny",

"Principal": {
"ON" : "EvilCorp",

"OU" : "*",

"CN" : "*"

}
"Action": "read",

"Resource": "log::*"

}
}

Figure 2: Deny policy; Acme Inc. hides their
transaction history from EvilCorp indiscrimi-
nately

{
"Name": "Pay software engineers",

"Statement": {
"Effect": "Allow",

"Principal": {
"ON" : "Acme",

"OU" : "SWE",

"CN" : "*"

}
"Action": "accept",

"Resource": {
"ON" : "Acme",

"OU" : "HR",

"CN" : "*"

}
}

}

Figure 3: Accept policy; Acme HR is allowed to
pay software engineers (SWE), notice a resource
can be either a regex or a principal.

3



proof-of-stake algorithm described below. Ev-
ery member of the random committee checks all
transactions in the block to verify they match the
relevant policies received from the Auth service.
It might be tempting here to use the Auth here
to pick committees in a methodical, centralized
way. However, this has the risk of single point
failure in the Auth resulting in bad blocks being
committed or the DoS of the whole blockchain.
The DoS danger remains present, as the inabil-
ity of nodes to receive policies from Auth will
not allow new blocks to be committed, but it
would be preferable if a compromise in the Auth
or DNSSec would not allow bogus blocks to be
accepted.

3.1 Proof-of-Stake

A simple proof-of-stake (PoS) algorithm can be
used to add blocks to the blockchain by means of
a committee, elected randomly across its mem-
bers. similar to [4], each node will perform a
federated lottery to see if he receives a winning
ticket. Every node with a winning ticket will
become a committee member and receive the
candidate block as well as all the relevant poli-
cies from the Auth server. If the transactions
in the block match the policies, and all com-
mittee members agree that the block is a reflec-
tion of the distributed ledger, the block will be
then committed to the blockchain. The common
”nothing-at-stake” issue [5] can be mitigated in
the PKI implementation by ostracizing bad ac-
tors. A suggested protocol is to penalize nodes
which accept all forks indiscriminately by tem-
porary certificate revocation.

3.2 Crypto

Nodes will communicate via an encrypted, non-
repudiated channel with other nodes and the
Auth after bootstrapping X509 client certifi-
cates. Certificates are tied to the domain name
that was requested by the node via DNSSec.
The X509 certificates wrap around an Elliptic
Curve25519 [6] public key, generated and used
for encryption and signing with the BoringSSL
library, made by Google. BoringSSL is not only
used in about a billion Android and chrome de-
vices, but the particular Curve25519 implemen-
tation in it has been formally verified [7]. Un-
like standard SSL/TLS where a variety of al-
gorithms can be offered from the server, here
only Curve25519 will be used for PKI, as this
reduced the cryptographic attack surface consid-
erably and there’s no backwards compatibility
requirement for the proposed protocol.

3.3 Masking transactions

One of the requirements for the private
blockchain is to enable private transactions to
be stored and verified. When verifying a can-
didate block, a policy similar to 2 dictates all
relevant metadata should be hidden from adver-
saries. This will be done by salting and hashing
the principals, as well as encrypting the transac-
tion metadata. The salt will be a global counter
maintained by Auth but incremented by every
node using a Lamport clock[8]. Amounts, times-
tamps and other metadata will be encrypted us-
ing symmetric aes-256-gcm and the secret prin-
cipals as the key. The invariant here is that if the
sender and recipient of a transaction are known,
the amount and time of the transaction can be
decrypted and used to verify the transaction in
a block. Auth server will serve as an unmasking

4



Figure 4: Transactions in a block are masked
and encrypted. The From/To fields are hashed
with a random salt which is included and the
metadata are encrypted with aes-256-gcm and
key = hash(From, To) so only when the sender
and recipient are unmasked the amount is visi-
ble.

mechanism and will keep a mapping of all masks
to principals for this purpose.

Figure 4 shows how transactions are masked
and stored inside a block. All transaction will be
masked by default, and only ”read” queries as in
3 will be unmasked by the Auth service. Masking
everything by default adds a little complexity to
how policies are handled though, since policies
reference unmasked principals. Again the Auth
server can be helpful by transforming policies to
their masked counterparts.

3.4 Masking policies

Authoritarianwill need to enforce policies even
without knowing the principals to which they
apply, an ability necessary for block verification.
Auth will mask policies to correspond to the

block a committee handles. Figure 5 shows how
2 will be masked to apply to the masked trans-
action 4. Notice how the masked sender and
recipient in 5 are masked with the same salt as
in 4.

{
"Statement": {

"Effect": "Deny",

// Acme Corp (masked)

"PrincipalMasked" : ["a45b54e

...", "1000"]

"Action": "read",

// Evil Corp (masked)

"ResourceMasked" : ["bf45432

...", "1002"]

}
}

Figure 5: Masked version of policy 2

4 Conclusion

Authoritariantries to walk the line between de-
centralized consensus and federated access poli-
cies. It requires minimal bootstrapping once
for every organization, and afterwards individual
nodes can register and participate themselves.
The privacy of the participants is preserved by
using the Auth server as an anonymizing proxy.
In addition, high-level policies are enforced by
the nodes which verify every transaction in a
block before committing to the blockchain, in
a scalable and sustainable way. Some disadvan-
tages are that the Auth server is a bottleneck
for masking policies when a new committee is
elected and a DoS attack on Auth can lead to
no new blocks being committed. This problem
can be solved with increased availability of Auth
and DDoS mitigation by means of proof-of-work

5



in the client requests to Auth. It is important to
verify all policies in the nodes in a distributed
way though, otherwise a compromised Auth can
lead to bogus blocks being committed to the
blockchain. All in all, Authoritarianis an opin-
ionated approach to a broad problem and relies
on cryptography and distributed systems algo-
rithms to address it. It does not suffer from a
variety of spoofing, tampering, information dis-
closure and repudiation attacks and is end-to-
end encrypted with minimal bootstrapping for
new nodes. Additional extensions in the future
should include formally verifying parts of Auth
as well as parts of the distributed consensus such
as the Lamport clock salt selection, as well as
tools to help ON admins incorporate their ma-
chine authentication to Authoritarian.

References

[1] J. Backes, P. Bolignano, B. Cook, C. Dodge,
A. Gacek, K. Luckow, N. Rungta,
O. Tkachuk, and C. Varming, “Semantic-
based automated reasoning for aws access
policies using smt,”

[2] J. Aas, “Let’s encrypt: Delivering ssl/tls ev-
erywhere,” Let’s Encrypt, vol. 18, 2014.

[3] P. V. et al, “Dynamic updates in the domain
name system (dns update),” RFC 2136, RFC
Editor, April 1997.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos,
and N. Zeldovich, “Algorand: Scaling byzan-
tine agreements for cryptocurrencies,” in
Proceedings of the 26th Symposium on Op-
erating Systems Principles, pp. 51–68, ACM,
2017.

[5] V. Buterin, “Slasher: A punitive
proof-of-stake algorithm,” Ethereum
Blog URL: https://blog. ethereum.
org/2014/01/15/slasher-a-punitive-proof-of-
stake-algorithm, 2014.

[6] D. J. Bernstein, “Curve25519: new diffie-
hellman speed records,” in International
Workshop on Public Key Cryptography,
pp. 207–228, Springer, 2006.

[7] A. E. J. Philipoom and J. G. R. S. A.
Chlipala, “Simple high-level code for cryp-
tographic arithmetic–with proofs, without
compromises,”

[8] L. Lamport, “Time, clocks, and the ordering
of events in a distributed system,” Commu-
nications of the ACM, vol. 21, no. 7, pp. 558–
565, 1978.

6


	Introduction
	Design
	Principals
	Bootstrapping
	Enforcing policies

	Distributed Ledger
	Proof-of-Stake
	Crypto
	Masking transactions
	Masking policies

	Conclusion

