Evaluating correlation between saliency maps and the
solution of maze puzzles

Eleftherios Ioannidis, Antonis Michael
Department of EECS
Massachussets Institute of Technology
Cambridge, MA 02139
elefthei@mit.edu, antonism@mit.edu

Abstract

Despite remarkable progress in the area of Convolutional Neural Networks, and
despite the ongoing need to create interpretable machine learning models [3| 4]],
this task remains one of the most challenging ones in the field. Prior work has
shown that saliency maps, that is, regions that are particularly important during
the process of image classification, could provide meaningful insights to the inner
workings of image classification models. That is because they visualize features
of the image that also seem important to humans, such as the eyes of an animal
figure[I] However, this approach as it is, cannot provide insightful information for
images that represent abstract objects such as a maze, for which it is not entirely
clear what would count as a meaningful feature. In this paper we aim to show
that perhaps we could utilize certain properties of the maze, namely the fact that
it has a solution, to show that when classified correctly, the saliency regions used,
correlate well with the solution path. This could provide an additional way in
evaluating and understanding the classification and misclassification process that
doesn’t involve features that are directly and immediately visible to humans but are
still interpretable when mapped appropriately.

1 Introduction

Although research on data-driven approaches in machine learning is developing rapidly at the moment,
complex machine learning models are still often seen as "opaque, uninterpretable black boxes” [3].
Providing good qualitative interpretations of high level features represented by such models remains
a challenge [6]]. At the same time, there is a growing need for understanding how such models behave,
not just for the sake of it but also for overcoming the limitations of current systems by extracting
interpretable information [3} 14]].

Prior work specifically in the area of deep convolutional neural networks (CNN5s) has attempted to
address this issue by providing saliency maps that allow humans to visualize, to some extend, the
inner workings of image classification models. By highlighting specific pixels in grayscale versions of
the input images, the saliency map algorithms aim to show which features where the most important
in the CNN classification process [, 16} 8l [7]. The idea is that these salient regions will be meaningful
to humans in order to allow us to evaluate when and why a CNN would misclassify an image. For
instance, figure [I|shows the saliency map for the classification process of a cheetah; it is especially
clear in the bottom right saliency map that the salient points are the nose, eyes and periphery of the
animal, features that are highly interpretable by humans.

The question becomes though, in images where it is not even clear what would count as an in-
terpretable feature, how can we meaningfully evaluate the classification process? That is, if the
image represents something abstract, such as a maze, then what feature could humans extract such

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Label: cheetah

Figure 1: An image of a cheetah on the left, and various saliency maps of the image on the right.
Image provided by SmoothGrad [6].

that we can get insights into the classification and misclassification of the image? We believe that
positive correlation of the salient regions with essential components that constitute the identity and
functionality of the object displayed, could provide good qualitative interpretations. In the case of the
maze this translates to evaluating how well salient regions correlate with the solution of the maze.

The success of this could show that when attempting to interpret features used by CNNs, besides
what is directly visible to the eye one could attempt to match the features to something else that
counts as essential to the identity of the image classE| This mapping would provide an additional
way in evaluating the mechanisms of CNNs in an indirect but yet interpretable way. To evaluate
our hypothesis we need to generate random mazes, solve them, generate saliency maps, both when
the maze is classified correctly or not, and then calculate the fraction of salient regions that pass
through the solution in each case. Given that the Inception v3 [9]] used here was highly successful
in the classification process we instead compared the fraction of salient points extracted when the
classification was correct against the fraction of random points generated that passed through the
solution. Positive correlation between the salient regions and the solution would be an initial good
indicator in the evaluation of our hypothesis but of course further work is necessary for more thorough
conclusions; we outline such future work at the end of this paper.

2 Methods

The project has five components: (1) A generative model that generates randomized mazes, (2) a
maze solver that always finds the shortest path from entrance to exit, (3) saliency map algorithms that
identify the salient regions in the maze, (4) a saliency extractor that extracts the most salient points in
the image, and finally (5) a checker that calculates the number of salient points passing through the
solution. See figure |2|for a block diagram representation of the processﬂ

The maze generator constitutes the Generative model, while the solver and the checker as seen in
figure [2] contribute to the evaluation of our hypothesis. The most important components are the
saliency map algorithms and saliency points extractor, since these are our primary source of data.

maze Saliency Map Algorithm saliency map Saliency Extractor k most salient points:

maze—b{ Maze Solver solution to maze

Figure 2: Block diagram representation of the process.

"Here we are implicitly assuming that having a continuous and interpretable solution path is an essential
feature of what makes a maze, a maze and not just a collection of random black and white spots.

2All the code used can be found in the Jupyter Notebook at https://github.com/
Maze-solving-learners/maze-saliency.

https://github.com/Maze-solving-learners/maze-saliency
https://github.com/Maze-solving-learners/maze-saliency

Vanilla Integrated Gradients

SmoothGrad smoothGrad Guided Backprop

Smoothgrad Integrated Gradients

Figure 3: Top-left: Auto-generated maze, Top-middle: Solved maze by Dijkstra’s shortest path, Top-
right: Salient points from SmoothGrad integrated gradient, Middle-left: Vanilla gradient saliency map
applied to the original image, Middle-middle: Vanilla with guided back-propagation saliency map,
Middle-right: Vanilla with integrated gradients, Bottom-left: SmoothGrad gradient, Bottom-middle:
SmoothGrad with guided back-propagation, Bottom-right: SmoothGrad with Integrated gradients

2.1 Generative model

The maze generative model is written in Python. It is initialized with a random seed and generates
random mazes of a given height and width. It uses a modified version of Prim’s minimum spanning
tree (MST) algorithm [2]. Prim’s algorithm ensures one and only one solution from the entrance to
the exit exists, with the additional bonus property that no cycles exist in the maze, which prevents
any chance of infinite loops. The symbolic graph representation of the maze is stored in a numpy
bitmap array of size 32x32 and a scaled-up, 320x320 image version is passed to the Convolutional
Neural Network (CNN) for classification. Walls are painted black and traversable paths are marked
white, two red pixels are used to mark the entrance to the maze at the top left corner and the exit to
the maze always in the bottom right as seen in the top-left image in figure 3]

2.2 Maze solver

The maze solver accepts a symbolic representation of the maze as its input and outputs the shortest path
to the exit as a series of cartesian coordinates. The initial maze bitmap representation is preprocessed
into an adjacency matrix representation, which becomes the input to Dijkstra’s algorithm. The
preprocessing that happens translates the 2D array into an undirected, acyclic graph, since the acyclic
property is given by construction with Prim’s algorithm. Dijkstra’s shortest path algorithm computes
a dictionary of predecessors for every node, so backtracking from the exit all the way to the entrance
by following the predecessors effectively gives the shortest path across the maze, as seen in the
top-middle image in figure 3]

Fraction of points that fall within the solution path

0.4

| I I I

0.

0.

0.0+ ' .

Random Smoothgrad Gradient Backprop 9 Gradient Vanilla Gradient Vanilla Backprop

Fraction

o

o

|

Vanilla Integrated Gradient

Figure 4: Benchmark results for three values of k, where we picked the £ most salient points produced
from saliency maps. SmoothGrad overtakes the vanilla salient map algorithms in all cases, with the
SmoothGrad with Integrated Gradients surpassing the rest.

2.3 Saliency maps

The saliency map algorithms identify the important (salient) features used by a CNN during the
classification process. Here we use the Inception v3 [9] to categorize the input image — the generated
maze — and then use two main approaches along with their variants to get its salient map. The first
one is a simple algorithm (Vanilla Gradient and its variations) that calculates the gradient of a class
prediction neuron with respect to the input pixels [[]]. This allows us to see how the class prediction of
an image changes when individual pixels are perturbed. Although the modifications of this approach,
namely the additions of guided back-propagation [7]] and integrated gradients [8] improve the clarity
of the output, the results are considerably noisy (see figure 3] top row). The second algorithm we use
is the SmoothGrad algorithm [[6] that attempts to denoise the saliency maps by adding pixel-wise
Gaussian noise to the input image. To do that it takes the image, adds noise to it in order to create
similar images and then averages the saliency maps of these images. This produce a crisper output
where the brightness of each pixel corresponds to how important that particular pixel is.

2.4 Saliency point extraction

Initially the dimensions of the autogenerated maze are 32x32 but the maze is magnified to 320x320
before passed to the saliency map algorithms. This gives better resolution, while making sure the
quality of the maze is not diminished. The bitmap representation chosen for mazes linearly scales up,
effectively by duplicating a pixel every time the size of the image doubles. Since we scale the image
up 10x, every pixel in the original maze will be a 10x10 block in the saliency map. Scaling the image
up allows for more granular control over salient points and allows to bucket the image, then select the
block with the highest cumulative saliency. This block maps to the most salient pixel in our original
32x32 representation. An example of going from saliency maps to saliency points can be seen in the
top-right image in figure 3]

3 Results

3.1 Checker

To evaluate our model we calculated the ratio of salient points that go through the solution path, and
compared it with the fraction of randomly generated points that go through the solution. Specifically,
for each set of salient points generated by the saliency map algorithms, we tested how many of the k
most prominent ones passed through the solution. We then generated k& random points and checked
how many of those passed through the solution. For both cases, before checking whether a point
passes through the solution we ensured that the point does not hit a wall. If the point was at a black
pixel we replaced it with the closest white pixel, that is, with the closest pixel at a distance of one
step away that corresponds to a path. The reasoning behind this perturbation is that while some
salience algorithms aggressively avoid the black walls (look at the Smoothgrad Integrated Gradients
implementation in figure[3), some others do not (such as the SmoothGrad Guided Backprop, figure [3)),

and we believe that a salient point that targets a wall next to the solution path still provides meaningful
information. In any case, the same process was applied to the randomly generated points in order to
ensure that there is no bias and that they can act as an objective control group.

Our results shown in [are encouraging. The SmoothGrad salience map method is on average
much more successful that the vanilla salience map method which performs poorly compared to the
random samples. The SmoothGrad with Integrated Gradients [8] salience map successfully intersects
the path to the solution about 46.6% of the time, for k¥ = 3, a significant fraction compared to the
randomized point sampling which intersects the solution about 27.6% of the time. For every value of
k € {1,2,3} there was a sample size of n = 100 auto-generated mazes that were passed through the
salience extractor and evaluated against the randomly generated points. The sample size of n = 100
is sufficient to show that there is a positive correlation between the saliency points and the solution to
the maze[’]

3.2 Statistical significance

Define X indicator random variable for saliency, that is, X (m) = 1[m € S] ¥m € M such that
M is the set of all points in a maze, and S the set of the most salient points. Similarly define Y
indicator random variable for being in the solution path, that is, Y (m) = 1[m € L] Ym € M,
such that L is the set of points that are in the solution path. Let the empirical mean of Y over n
samples be iy, and the empirical mean of Y'|X = 1 over n be fiy|x. Assume these empirical
means are actually the true means, that is, E[Y] = P(Y = 1),E[Y|X = 1] =P(Y = 1|X =1).

Define P(X = 1) = px,px = P(X = 1) = PEGEEERIN=D — - P(X = 1Y = 1). The

covariance between the random variable X, Y is given by Cov(X,Y) = E[XY] — E[X]E[Y] =
P(X =1Y =1)-P(X = 1)P(Y = 1) = (fly)x — fiy)px. The standard deviations are

0% = px(1 - px) and 0§ = iy (1 — fiy).

Hence, given that for k = 1, /iy = 0.247 and fiy|y = 0.415, then Corr(X,Y) = €221 —

fy|x —fy)px
Vox (1=px)\/fy (1= jiv)
1) > P(Y = 1) which results in positive correlation between X and Y[Since our data gives us
only empirical means we can use concentration bounds (Chernoff and Chebyshev) to obtain regions
for E[Y], E[Y|X] with high probability. In particular, for an indicator random variable) with
probability p, ig = 2 3" | ¢; and E[Q] = p, then P(|p — 1ip < ¢[) > 1 — 2¢9(€'"*) which means
that we can obtain that P(Y = 1) = E[Y] can be kept in a region [iy — €, iy + €] for small e
with high probability. Similarly, P(Y = 1|X = 1) = E[Y = 1|X = 1] can be kept in a region
[fty)x — € fiy|x + €] for small € with high probability.

> 0. Note that one gets positive covariance whenever P(Y = 1|X =

Using Chebyshev inequality, for n = 100 we get P(|uy — piy > ¢€]) < \/1%%(5}2/) . Since we don’t have

the actual variance, we bound the variance by the maximum possible value, which given that Y is
an indicator random variable is Var(Y") < 0.25. Same logic follows for Y| X = 1. Therefore, our
mean estimations for both Y and Y| X = 1 are accurate to within £5%, at a 95% level of confidence.

4 Conclusions

The results we obtained show a positive statistical correlation between the salience points from
SmoothGrad with Integrated gradients [8] and the solution to the maze. Firm conclusions are hard
to make though, despite the agreeable benchmarks. A way to explain these results that is in line
with our hypothesis, is that classifying an image as a maze entails utilizing in some abstract way
the two properties that characterize it: a maze is a complicated network of hedges that has a non-
trivial solution. Hence, in classifying a maze as such the CNN may utilize features that capture
the underlying structure of a solution regardless of the representation that the CNN has of the
solution. Neither the results nor their proposed explanation we provide here are entirely satisfying,

3Note that given that the generative model has no upper limit to the amount of randomized maze data it can
generate, the system can easily be trained with thousands of samples, just by adjusting a single variable; the only
issue with increasing n would be computational time.

“The analysis in this part reflects the best performance amongst the saliency map algorithms, i.e. the
performance of Smoothgrad Integrated Gradient.

and definitely not conclusive in confirming our hypothesis. Further work needs to be done, namely run
much larger sample sizes to evaluate the saliency regions against the solution when the classification
for mazes fails. Or instead of using Inception v3 use a lower accuracy classifier and compare the
fraction of in-the-path salient points with the fraction found here. Furthermore, more thorough
work must be done to provide a more nuanced explanation for the positive correlation observed
— or perhaps anchor the current one more elegantly within the literature. Our work, although not
conclusive, we believe has exposed some properties of salience maps that were possibly not thought
of before and has provided some useful insight into how image classification can expose underlying
properties of the image that were previously unknown.

References

[1] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

[2] Shimon Even. Graph algorithms. Cambridge University Press, 2011.

[3] Michael C Hughes, Huseyin Melih Elibol, Thomas McCoy, Roy Perlis, and Finale Doshi-Velez.
Supervised topic models for clinical interpretability. arXiv preprint arXiv:1612.01678, 2016.

[4] Been Kim, Elena Glassman, Brittney Johnson, and Julie Shah. ibcm: Interactive bayesian case
model empowering humans via intuitive interaction. 2015.

[5] Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, SM Eslami, and Matthew
Botvinick. Machine theory of mind. arXiv preprint arXiv:1802.07740, 2018.

[6] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[7] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[8] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365, 2017.

[9] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818-2826, 2016.

	Introduction
	Methods
	Generative model
	Maze solver
	Saliency maps
	Saliency point extraction

	Results
	Checker
	Statistical significance

	Conclusions

