
1

Normalization-by-evaluation and Metaprogramming with
PHOAS

ELEFTHERIOS IOANNIDIS, PHD STUDENT, ACM: 4333776, University of Pennsylvania, Advised
by Steve Zdancewic

Parametric Higher-Order Abstract Syntax (PHOAS) skips the binder bureaucracy and leverages the meta-
language’s variable capturing facilities in the object-language. Using the Coq proof-assistant, we take the
PHOAS approach to the next logical conclusion and show how to use the meta-language’s evaluation mecha-
nism for object-language Normalization-by-evaluation. We also show how the polymorphic nature of PHOAS
allows us to do typed metaprogramming with an infinite a tower of embedded languages, while maintaining
type-safety across levels. Those novel uses of PHOAS inspire hope that there are more promising applications
to be discovered.

ACM Reference Format:
Eleftherios Ioannidis, PhD student, ACM: 4333776. 2022. Normalization-by-evaluation and Metaprogramming
with PHOAS. 1, 1, Article 1 (November 2022), 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

PROBLEM STATEMENT
Compiler verification is a fundamental problem in formal methods. For any computer scientist a
bug in the compiler leads to arbitrary program behavior, will require arduous debugging and a
deep understanding of the compiler’s inner workings to solve. Formally verified compilers inspire
confidence and a solid foundation for creating new software.
There have been several successful compiler verification projects; the CompCert certified C

compiler [7], the CertiCoq Gallina compiler [1] and more [6][9][3]. This work focuses on verified
compilers for the lambda-calculus family. Specifically, we will show how Parametric Higher-Order
Abstract Syntax (PHOAS) [2] can accelerate the development of verified functinal compilers in more
ways than originally intended. The reader can consult the original PHOAS paper by Adam Chlipala
on how PHOAS can achieve that [2]. In this work we present two novel PHOAS applications
(1) Normalization of higher-order terms
(2) Quasiquotation and Metaprogramming

Readers should refresh their memory on PHOAS syntax and denotational semantics for the Simply-
Typed Lambda Calculus (λ→)in Coq by reading Appendix A.

Higher-order terms
A functional compiler with a first-order product language like assembly must flatten higher-
order terms to a first-order series of instructions. The usual approaches are Closure-conversion
(CC) [8], Defunctionalization [4] or Normalization-by-evaluation (Nbe) [5]. Maintaining a HOAS
syntax between CC and Defunctionalization transformations is difficult or impossible, due to the
introduction of evaluation contexts which erase dependent types. Normalization-by-evaluation
(Nbe) provides an attractive alternative.

In nominal forms of λ→ with explicit binders Nbe cannot be implemented in a single AST
pass. Beta-reductions might produce additional beta-redexes. Roughly, one would need to traverse
the AST at least as many times as the longest sequence of nested lambda abstractions. Verified

Author’s address: Eleftherios Ioannidis, PhD student, ACM: 4333776, elefthei@seas.upenn.eduUniversity of Pennsylvania,
Advised by Steve Zdancewic.

2022. XXXX-XXXX/2022/11-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Eleftherios Ioannidis, PhD student, ACM: 4333776

implementations of Nbe in nominal forms often use fuel, then prove an upper bound on the fuel to
establish termination. That is not the case in HOAS, Danvy et al. [5] gave a two-line implementation
of Nbe based on reify/reflect using typeclasses for structural induction on the type of terms. Their
approach is promising and with a few adjustments to deal with the positivity restriction, results in
the Nbe instances in fig. 1.

Class Nbe (t: type) := {
reify: typeDenote t → Term typeDenote t;
reflect: Term typeDenote t→ typeDenote t

}.
Instance Nbe_lam {a b: type}'{ Nbe a}'{ Nbe b}: Nbe <{{ a → b }}> := {
reify v := LAM (fun x ⇒ reify (v (reflect (VAR x))));
reflect e := fun x ⇒ reflect (APP e (reify x))

}.
Instance Nbe_int : Nbe <{{ Num }}> := {
reify v := NUM v;
reflect v := termDenote v;

}.
Definition normalize {t: type} '{ Nbe t}(e: Term typeDenote t): Term typeDenote t :=
@reify t _ (@reflect t _ e).

Fig. 1. The reify-reflect normalization by structural induction on types

The reify-reflect methods define an isomorphism from λ→ terms to Gallina terms that is strongly
normalizing. Reflection tranforms object-language terms to meta-language terms and reification
does the opposite, taking meta-language terms to the object-language. Gallina’s beta-reduction
mechanism is invoked when a term is reflected, then reification brings the normal form back to the
object-language’s domain. Our definition requires no fuel and is small and elegant. The proof of
correctness for strong normalization is only a few lines (Appendix B).

Metaprogramming
A common subject in programming languages is metaprogramming, embedding languages within
languages. We worked with object-language (λ→) and meta-language (Gallina) until this point,
but now we generalize. As λ→ was embedded in Gallina, we will embed an object-language
λ→2 in λ→1 = λ→ by embedding meta-terms in place of the PHOAS binders. A compositional
metaprogramming framework should allow embedding an infinite sequence of languages that each
denote to the next one. Defining ▷ to mean “denotes to the right”, for example λ→1 ▷Gallina, we will
show it is possible to get

λ→n ▷ . . . λ
→
2 ▷ λ

→
1 ▷ Gallina

By using typed PHOAS on each denotation, our use of metaprogramming has to be well-typed in
Gallina and does not require a well-formedness predicate.
Let us make some observations. First, the type of terms for λ→1 is Term typeDenote t. Due to

polymorphism of Type any type -> Type function can be used instead of typeDenote, including
Term typeDenote: type -> Type, to get Term (Term typeDenote) t, the type of λ→2 terms
which denote to λ→1 . Generalize termDenote to the Denotation typeclass to implement ▷, as seen
in fig. 2. The base step is termDenote which implements (λ→1 ▷ Gallina) and the inductive step
λ→n ▷ λ

→
n−1 is termFlatten, producing an infinite chain of denotations.

Finally, a demonstration of metaprogramming. Consider the fixpoint function add1 that bumps
all numbers in a language by 1 and the meta Ltac annotation that assists with existential variable

POPL’22 SRC

Normalization-by-evaluation and Metaprogramming with PHOAS 1:3

Class Denotation (v: type → Type) := {
denote{t}(e: Term v t): v t

}.
Fixpoint termFlatten {t: type} { v: type→ Type} (e: Term (Term v) t): Term v t :=
match e with

| VAR v ⇒ v

| NUM f ⇒ NUM f

| ADD l r ⇒ ADD (termFlatten l) (termFlatten r)
| APP e1 e2 ⇒ APP (termFlatten e1) (termFlatten e2)
| LAM e' ⇒ LAM (fun x ⇒ termFlatten (e' (RET x)))
end.

#[refine]
Instance baseDenotation: Denotation typeDenote := {}.
intro; exact (termDenote). Defined.
#[refine]
Instance stepDenotation v {Denotation v}: Denotation (Term v) := {}.
intro; exact (termFlatten). Defined.

Fig. 2. A chain of denotations defined by structural induction on denotation

instantiation (Appendix C). Calling add1 on λ→3 only affects the terms of λ→3 and does not change
the terms of λ→1 , λ

→
2 . The inverse is also possible, a depth-first approach to modify λ→1 terms, as

well as fine-grained control of which level a transformation will affect.
Tactic Notation "meta" uconstr(x) := refine x; exact typeDenote.
Definition l3 :=
ltac:(meta <{ \ _, #1 + (@ (#3 + (@(#1)))) }>).

Definition l2 := denote (add1 l2).

Compute add1 l3. (* = <{ _, #2 + @ (#3) + @ (#1) }> *)

Compute l2. (* = <{ _, #2 + (#3 + @ (#1)) }> *)

Compute add1 l2. (* = <{ _, #3 + #4 + @ (#1) }> *)

Compute denote (denote (add1 l2)) (* = <{ _, 8 }> *)

PHOAS enables programming across levels of meta-languages without binder bureaucracy, a pain
that would only be amplified by an infinite tower of embedded languages, each with their own
binders. Notice we maintain dependent types all the way down and can not get ill-typed terms
at any level. We are very hopeful more interesting properties of PHOAS will come up, as it is a
natural representation in the edge of meta and object language.

REFERENCES
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Belanger,

Matthieu Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for Coq. In The third international workshop
on Coq for programming languages (CoqPL).

[2] Adam Chlipala. 2008. Parametric higher-order abstract syntax for mechanized semantics. In Proceedings of the 13th
ACM SIGPLAN international conference on Functional programming. 143–156.

[3] Adam Chlipala. 2010. A verified compiler for an impure functional language. ACM Sigplan Notices 45, 1 (2010), 93–106.
[4] Olivier Danvy and Lasse R Nielsen. 2001. Defunctionalization at work. In Proceedings of the 3rd ACM SIGPLAN

international conference on Principles and practice of declarative programming. 162–174.
[5] Olivier Danvy, Morten Rhiger, and Kristoffer H Rose. 2001. Normalization by evaluation with typed abstract syntax.

Journal of Functional Programming 11, 6 (2001), 673–680.

POPL’22 SRC

1:4 Eleftherios Ioannidis, PhD student, ACM: 4333776

[6] Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML.
ACM SIGPLAN Notices 49, 1 (2014), 179–191.

[7] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.
CompCert-a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress.

[8] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed closure conversion. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on principles of programming languages. 271–283.

[9] LUCAS SILVER, IRENE YOON, YANNICK ZAKOWSKI, and STEVE ZDANCEWIC. [n. d.]. Equational Proofs of
Optimizations with Interaction Trees. ([n. d.]).

APPENDIX A: PHOAS SYNTAX
Object-language types in PHOAS and type denotations in the meta-language.

Inductive type : Type :=
| TNum: type
| TArrow : type → type → type.

Declare Custom Entry stlc_ty.
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "(x)" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S → T" := (TArrow S T) (in custom stlc_ty at level 2, right associativity).
Notation "'Num'" := TNum (in custom stlc_ty at level 0).

Fixpoint typeDenote (t : type) : Set :=
match t with

| <{{ Num }}> ⇒ nat

| <{{ t1 → t2 }}> ⇒ typeDenote t1 → typeDenote t2

end.

Fig. 3. Types of λ→ language denote to Gallina types

The Simply-Typed Lambda Calculus (λ→) PHOAS syntax and denotational semantics.

POPL’22 SRC

Normalization-by-evaluation and Metaprogramming with PHOAS 1:5

Section vars.
Variable var : type → Type.
Inductive Term: type → Type :=
| NUM: nat → Term <{{ Num }}>
| ADD: Term <{{ Num }}> → Term <{{ Num }}> → Term <{{ Num }}>
| APP: ∀ a b, Term <{{ a → b }}> → Term a→ Term b

| VAR: ∀ a, var a → Term a

| LAM: ∀ a b, (var a → Term b) → Term <{{ a → b }}>.
End vars.

Fixpoint termDenote {t: type} (e : Term typeDenote t) : typeDenote t :=
match e in (Term _ t) return (typeDenote t) with
| VAR v ⇒ v

| NUM f ⇒ f

| ADD l r ⇒ (termDenote l) + (termDenote r)
| APP e1 e2 ⇒ (termDenote e1) (termDenote e2)
| LAM e' ⇒ fun x⇒ termDenote (e' x)
end.

Declare Custom Entry stlc.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "(x)" := x (in custom stlc, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x y" := (APP x y) (in custom stlc at level 2, left associativity).
Notation "x + y" := (ADD x y) (in custom stlc at level 2, left associativity).
Notation "\ x , y" :=
(LAM (fun x ⇒ y)) (in custom stlc at level 90,

x constr,
y custom stlc at level 80,
left associativity).

Notation "_ , y" :=
(LAM (fun _ ⇒ y)) (in custom stlc at level 90,

y custom stlc at level 80,
left associativity).

Notation "# n" := (NUM n) (in custom stlc at level 0).
Notation "@ n" := (VAR n) (in custom stlc at level 0, n custom stlc at level 1).
Notation "{ x }" := x (in custom stlc at level 1, x constr).

Fig. 4. PHOAS syntax and denotational semantics for λ→

APPENDIX B: STRONG NORMALIZATION PROOF
Proof of strong-normalization for Nbe. The predicate fof indicates a first-order function, either
a nullary function or an n-arry function whose arguments are all first-order terms. Then value
indicates first-order values (does not include lambdas) and hnff is for head-normal form, a nullary
function which is a value or a n-arry function which has all the binders in the top-level and the
types of binders match the negative types in the type arrow. A function in in head-normal form is
normal and has no undreduced beta-redexes.

POPL’22 SRC

1:6 Eleftherios Ioannidis, PhD student, ACM: 4333776

Inductive fof: type → Prop :=
| fo_num: fof <{{ Num }}>
| fof_num: ∀ a,

fof <{{ a }}> →

fof <{{ Num → a }}>.

Inductive value: ∀ {t: type}, Term typeDenote t→ Prop :=
| Value_var: ∀ x, @value <{{ Num }}> (@VAR typeDenote <{{ Num }}> x)
| Value_const: ∀ (x: nat), @value <{{ Num }}> (NUM x).

Inductive hnff: ∀ (t: type), Term typeDenote t → Prop :=
| HNF_num_ar: ∀ a f,

(∀ (arg: typeDenote <{{ Num }}>), hnff <{{ a }}> (f arg)) →

hnff <{{ Num → a }}> (LAM f)
| HNF_num: ∀ e,

value e →

hnff <{{ Num }}> e.

Theorem normalize_correct: ∀ (t: type) (e: Term typeDenote t),
fof t →

hnff t (normalize e).
Proof with eauto.
induction t0;
intros; dependent destruction e; cbn; try constructor;
inversion H; clear H; subst; cbn; try constructor...

Defined.

APPENDIX C: METAPROGRAMMING DEMO

Fixpoint add1 {t: type} { v: type → Type} (e: Term v t): Term v t :=
match e with

| NUM f ⇒ NUM (f+1)
| APP e1 e2 ⇒ APP (add1 e1) (add1 e2)
| ADD e1 e2 ⇒ ADD (add1 e1) (add1 e2)
| LAM e' ⇒ LAM (fun x ⇒ add1 (e' x))
| RET v ⇒ RET v

end.

Tactic Notation "meta" uconstr(x) := refine x; exact typeDenote.
Definition l3 :=
ltac:(meta <{ \ _, #1 + (@ (#3 + (@(#1)))) }>).

Compute add1 l3. (* = <{ _, #2 + @ (#3) + @ (#1) }> *)

Compute denote (add1 l3). (* = <{ _, #2 + (#3 + @ (#1)) }> *)

Compute denote (add1 (denote (add1 l3))).
(* = <{ _, #3 + #4 + #1 }> *)

Compute denote (denote (add1 (denote (add1 l3)))).
(* = <{ _, 8 }> *)

POPL’22 SRC

	Abstract
	References

