Parallel and Distributed Extensions

MIT

E ECS ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

to the LLVM Compiler i
SuperUROP

Lefteris loannidis, Shoaib Kamil, Saman Amarasinghe
MIT EECS Undergraduate Research and Innovation Scholar

Ihe LLVIVIiCompiler=0Overnrview Previous WWork

Khronos Group OpenCL SPIR and Runtime

Clang C/C++/0bjC LW
¢ Frontend X86 Backend o X80 - p
£ /4
————— ————— Ntarn e Apps and
{ Language for Frameworks
LLVM LLVM) Kernels
Fortran —#=| llvm-gce Frontend Optimizer PowerPC Backend | ™ FowerPC \ /
————— S ——— ————— SPIR Generator
[(e.g. patched Clang) } ‘@CL
LL'IUI'M Wﬁmub.mm/Khmnosamup/sp\R
Haskell -»| GHC Frontend - ARM
LLVM IR LLVM IR ARM Backend SPIR is easier compiler\, j
————— ————— target than C @R

SPIR SYCL
(Standard Portable Programming abstraction that combines
_ Intermediate Representation) portability and efficiency of OpenCL with
First portable IR that includes

ease of use and flexibility of C++

support for parallel computation , SYCL 1.0 Provisional Released
Created in close cooperation with OpenCL run-time OpenCL C March 2014
LLVM community can consume SPIR Runtime

SPIR 1.2 Released
_ January 2014
{:‘ : (uses LLVM 3.2) I

[Device X] [Device Y] [Device Z J

Propagate parallel interfaces exposed in the frontend (Clang) to

the LLVM Backend, by designing a parallel interface in the

Intermediate Representation level (LLVM IR). Lacks

Common Parallelllnterfaces

A parallel intermediate representation for OpenCL

Support for other Parallel Interfaces and Runtimes

POSIX/PthreadS OpenMP Execution gynchronization Memory .
n pthread_create () n #pragma omp parallel Language | Parallelism Task Task tP[-:-|_1n1.- Atomic Model S,?Et;j;:_
] pthread_join () | #prag—ma omp for creation join point section
. pthread_klll () . #pragma omp sections F}:;];Tj sSpawn BYIC cilk lock | Shared
= pthread mutex lock() " #pragma omp teams El'h::{:}l E:‘r'an begin syne | eyne (P'_':":‘:;F"']' (on)
" pthread mutex unlock () " fpragma omp single cobegin
- - 1 areach async inish next atomic 3 AS a
" pthread_cond_waj—t () " #pragma omp task E:IE:{‘-]:TI:::"I:‘G]:’ : | Fuium poist l"nrc:1-r: islc:nl:-ltr:d Flfliﬂ:ﬂ_} o)
* pthread cond signal () " #pragma omp barrier Java(Rice) get
" int pthread barrier wait() = #pragma omp atomic OpenMP- | omp for omp task omp taglwait . Shared private,
. omp RE- omp section omp harrier nmp shared...
tioms atomie

Inte' Cllk OpanCL EngueneND-| EnqueweTask Finish events | atom add] Distribu- ReadBuller

C}lk_spawn () Challenge RangeKerne] EngueneBarriern ted Write Buffery
. Cllk_S ynC () MPIT T'ﬂPI_TnH' l-TP'I_:apawn T"..-'[F"T_F‘ina]i:-.P — — INistribu- I"-.-I]:"I_:'_-T-F-nd
" Cllk_fOr() MPT Barrier ted MPI Recw.
= CILK C REGISTER REDUCER () Translate the variety of these
. CILK_C_UNREGI STER REDUCER ()) i 8PIRE sequential, Spawn barrier si-?nal atomic E]._mrel.i‘ aend,

i - interfaces to a single Parallel paxallel walt pistribuc weev

" vecCctors . .
oo Intermediate Representation

egion .

PIR). This PIR h n .

‘ Task (PIR). This PIR has to be 2 Porting to LLVM
* region<int> extension of the LLVM IR and be
" re"f“ss ”() compatible with the LLVM SPIRE can be ported to LLVM IR by adding a small set of
Towrites Backend. i i
. Partition<s attributes to standard LLVM objects.
" array<>

CEVIVIrParallelfR Next Step: Distributed RuntimeyLegion
This is our plan to port SPIRE to LLVM. Parallel to Distributed Challenge
" An execution attribute is added to functionandblock: a

parallel basic block sees all its instructions launched in parallel (in a Parallel C/C++ Code Propagate the Parallel Interfaces, through the

fork/join manner), while all the blocks of a parallel function are seen as LLVM PIR, into a distributed runtime like the

parallel tasks to be executed concurrently; Legion system developed at Stanford University.
" Asynchronization attribute isadded to instruction;

therefore, an instruction can be annotated with spawn, barrier, [Clang] |

single and atomic synchronization attributes. When one wants to Epe

deal with a sequence of instructions, this sequence is first outlined in a Applications

function, to be called instead; this new call instruction is then annotated
by the proper synchronization attribute, such as spawn, if the sequence

: L Default Custom
S

must be considered as an asynchronous task. A similar technique is used LLVM PIR
for the other synchronization constructs barrier, single and . .
-
atomic.
= As LLVM provides a set of intrinsic functions [13], SPIRE functions
newEvent, signal and wait for handling point-to-point [Legion Runtime] Legion High-Level Runtime
synchronization, and send and recv for handling data distribution, are
added to this set. Low-Level Runtime APl (with Machine Model)

Distributed Code

r—— = ="
Shared-Memory- GASNet + CUDA Extensible Low-
Only Runtime Pthreads Runtime | Level Runtime I
|

