Parallel and Distributed Extensions

MIT

E ECS ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

to the LLVM Compiler i
SuperUROP

Lefteris loannidis, Shoaib Kamil, Saman Amarasinghe
MIT EECS Undergraduate Research and Innovation Scholar

Ihe LLVIVIiCompiler=0Overnrview Previous WWork

Khronos Group OpenCL SPIR and Runtime

Clang C/C++/0bjC LW
¢ Frontend X86 Backend o X80 - p
£ /4
————— ————— Ntarn e Apps and
{ Language for Frameworks
LLVM LLVM ) Kernels
Fortran —#=| llvm-gce Frontend Optimizer PowerPC Backend | ™ FowerPC \ /
————— S ——— ————— SPIR Generator
[ (e.g. patched Clang) } ‘@CL
LL'IUI'M Wﬁmub.mm/Khmnosamup/sp\R
Haskell -»| GHC Frontend - ARM
LLVM IR LLVM IR ARM Backend SPIR is easier compiler\, j
————— ————— target than C @R
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(Standard Portable Programming abstraction that combines
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First portable IR that includes
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Propagate parallel interfaces exposed in the frontend (Clang) to

the LLVM Backend, by designing a parallel interface in the

Intermediate Representation level (LLVM IR). Lacks

Common Parallelllnterfaces

A parallel intermediate representation for OpenCL

Support for other Parallel Interfaces and Runtimes
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CEVIVIrParallelfR Next Step: Distributed RuntimeyLegion
This is our plan to port SPIRE to LLVM. Parallel to Distributed Challenge
" An execution attribute is added to functionandblock: a

parallel basic block sees all its instructions launched in parallel (in a Parallel C/C++ Code Propagate the Parallel Interfaces, through the

fork/join manner), while all the blocks of a parallel function are seen as LLVM PIR, into a distributed runtime like the

parallel tasks to be executed concurrently; Legion system developed at Stanford University.
" Asynchronization attribute isadded to instruction;

therefore, an instruction can be annotated with spawn, barrier, [ Clang ] |

single and atomic synchronization attributes. When one wants to Epe

deal with a sequence of instructions, this sequence is first outlined in a Applications

function, to be called instead; this new call instruction is then annotated
by the proper synchronization attribute, such as spawn, if the sequence
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must be considered as an asynchronous task. A similar technique is used LLVM PIR
for the other synchronization constructs barrier, single and . .
-
atomic.
= As LLVM provides a set of intrinsic functions [13], SPIRE functions
newEvent, signal and wait for handling point-to-point [ Legion Runtime ] Legion High-Level Runtime
synchronization, and send and recv for handling data distribution, are
added to this set. Low-Level Runtime APl (with Machine Model)
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