
The LLVM Compiler - Overview

Lefteris Ioannidis, Shoaib Kamil, Saman Amarasinghe
MIT EECS Undergraduate Research and Innovation Scholar

Parallel and Distributed Extensions 
to the LLVM Compiler

Previous Work

Common Parallel Interfaces SPIRE: Sequential to Parallel IR Extension

LLVM Parallel IR Next Step: Distributed Runtime/Legion

Objective

Propagate parallel interfaces exposed in the frontend (Clang) to 
the LLVM Backend, by designing a parallel interface in the 

Intermediate Representation level (LLVM IR).

Khronos Group OpenCL SPIR and Runtime

POSIX/Pthreads
 pthread_create()

 pthread_join()

 pthread_kill()

 pthread_mutex_lock()

 pthread_mutex_unlock()

 pthread_cond_wait()

 pthread_cond_signal()

 int pthread_barrier_wait()

Provides A parallel intermediate representation for OpenCL

Lacks Support for other Parallel Interfaces and Runtimes

Intel Cilk
 cilk_spawn()

 cilk_sync()

 cilk_for()

 CILK_C_REGISTER_REDUCER()

 CILK_C_UNREGISTER_REDUCER()

 vectors

OpenMP
 #pragma omp parallel

 #pragma omp for

 #pragma omp sections 

 #pragma omp teams

 #pragma omp single

 #pragma omp task

 #pragma omp barrier 

 #pragma omp atomic

Legion
 Task

 region<int>

 reads()

 writes()

 Partition<>

 array<>

Challenge

Translate the variety of these 
interfaces to a single Parallel 
Intermediate Representation 

(PIR). This PIR has to be an 
extension of the LLVM IR and be 

compatible with the LLVM 
Backend. 

Porting to LLVM

SPIRE can be ported to LLVM IR by adding a small set of 
attributes to standard LLVM objects.

This is our plan to port SPIRE to LLVM.
 An execution attribute is added to function and block: a 

parallel basic block sees all its instructions launched in parallel (in a 
fork/join manner), while all the blocks of a parallel function are seen as 
parallel tasks to be executed concurrently;

 A synchronization attribute is added to instruction;
therefore, an instruction can be annotated with spawn, barrier, 
single and atomic synchronization attributes. When one wants to 
deal with a sequence of instructions, this sequence is first outlined in a 
function, to be called instead; this new call instruction is then annotated 
by the proper synchronization attribute, such as spawn, if the sequence 
must be considered as an asynchronous task. A similar technique is used 
for the other synchronization constructs barrier, single and 
atomic.

 As LLVM provides a set of intrinsic functions [13], SPIRE functions 
newEvent, signal and wait for handling point-to-point 
synchronization, and send and recv for handling data distribution, are 
added to this set.

Parallel C/C++ Code

Clang

Legion Runtime

LLVM PIR

Parallel to Distributed

Distributed Code

Challenge

Propagate the Parallel Interfaces, through the 
LLVM PIR, into a distributed runtime like the

Legion system developed at Stanford University.


