MIT SUPERUROP 2015, JUNE 2015

Parallel Back-End for the Halide Image Processing
Language

Lefteris Ioannidis, SuperUROP Student, MIT CSAIL
Shoaib Kamil, Research Scientist, MIT CSAIL

Abstract—As computers are using increasingly more
complex memory hierarchies and programming languages
are incorporating more complex parallel semantics, the
problem of determining optimal data distributions for
parallel programs is becoming more difficult. Finding the
optimal execution schedule for every parallel code is an
NP-Complete problem, but that is not the end of the road.
The Halide high-performance language for computational
photography, developed here at CSAIL, uses machine
learning and auto-tuning techniques to find a schedule
very close to optimal. In the Commit group of CSAIL
we are working on a Parallel Back-End for Halide, that
will lower explicit parallelism to the level of the optimizer
and allow more complex parallel optimization passes to
be used. Our back-end is an extension to the existing
LLVM Intermediate Representation (IR) and consists of a
set of metadata and annotations that explicitly describe
parallel loops and vectorizable data structures to the
optimizer. Then our Parallel Optimization Passes find
the best arrangement of data inside the Halide pipeline
and handle instruction parallelization, array tilling and
vectorization. Our goal for this new interface is for it to
be simple, minimalistic and backwards compatible with the
existing IR, to eventually reach the LLVM upstream and
to become the de facto parallel semantics for the LLVM
compiler. Our work is important because it will enable
more languages with parallel front-ends, to take advantage
of common automatic performance optimization patterns.

Index Terms—Halide, LLVM, Performance, Image,
Back-End, Parallel, Intermediate, Representation, Lan-
guages, Compilers.

I. INTRODUCTION

FTER the end of Moore’s law struck transistor
manufacturers we witnessed the dawn of the mul-
ticore age. For the past twenty years many frontiers in
the domain of parallel programming have been broken,
allowing us to seemingly write parallel code without
worrying about architecture specific details. Now with

L. Ioannidis is with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, 02139 USA e-mail: elefthei@mit.edu

Manuscript received April 3, 2015.

the rise of Cloud and Distributed Computing, program-
mers are called to use more complex parallel and dis-
tributed semantics to write scalable software for large
computer clusters with thousands of machines. The com-
plexity increases exponentially with every new layer of
memory the programmer has to optimize around. It is
the job of Programming Language Engineers to build
languages, compilers and interpreters that take away
some of the burden of manual Performance Optimization
and do it automatically. The Halide [1] language is a
Domain Specific Language (DSL) for High Performance
Image Pipeline Processing. Image processing pipelines
are everywhere, and are essential to capturing, analyzing,
mining, and rendering the rivers of visual information
gathered by our countless cameras and imaging-based
sensors. Applications from raw processing, to object
detection and recognition, to Microsofts Kinect, to In-
stagram and Photoshop, to medical imaging and neural
scanning all demand extremely high performance to cope
with the rapidly rising resolution and frame rate of image
sensors and the increasing complexity of algorithms.
There are many common use cases of complex pipelines,
where manual optimization is nearly impossible, like
the local Laplacian filter transform with more than 99
pipeline stages. The Halide language offers rich paral-
lel semantics to describe grid operations on graphics,
optimized for different CPU and GPU architectures.
It also allows explicit runtime scheduling in terms of
parallelization, tilling and vectorization and includes
a back-end that compiles the pipeline for multi-core
architectures.

Those optimizations happen during runtime. The Halide
JIT compiler consumes work items and schedules them
opportunistically. The majority of the parallel loop op-
timizations though could take place in compile time,
which would allow better data manipulation and bet-
ter performance, depending on the loop locality. For
example Polly [2], the Polyhedral Loop Optimization
Framework for LLVM, statically runs optimizers on
nested loops and determines the optimal locality for the
given arrays. In Halide we can achieve compile-time
parallel loop optimization by propagating the parallel



MIT SUPERUROP 2015, JUNE 2015

semantics down to the IR level. Because we want to
take full advantage of optimization hardware offered by
the CPU we have to propagate both parallelization and
vectorization information from the Halide front-end, so
the back-end can determine an optimal static schedule for
these. Halide is based on the LLVM compiler suite and
uses the LLVM IR internally, so most of the new Parallel
constructs we use for Halide can be used by LLVM too.
We chose to work with Halide on this because it offers
rich Parallel Semantics on the front-end. When explicit
parallel semantics are lacking, automatic optimization
becomes harder. For example, the cilk [3] project uses
strong sequential semantics and implicit parallelization.
The parallel semantics on which my work was focused
are nested parallel loops with loop-carried dependencies
and vectorization potential. Designing a full Parallel IR
which is compatible with both Sequential semantics and
Parallel Semantics is a task which is beyond the scope of
this paper but definitely a direction parallel IRs should
be heading in the future. Instead we aim to begin this
effort inside LLVM, the most popular compiler suite, by
lowering to the IR level parallel and serial loops in the
most descriptive way, in terms of both parallelization and
vectorization.

II. PREVIOUS WORK

A. OpenCL SPIR

A lot of research on IRs is motivated by graphics op-
timizations. One such example of a parallel IR designed
for GPUs is OpenCL SPIR [6]. SPIR was also built by
extending the LLVM IR to include a few metadata that
describe OpenCL kernel functions. It was created when
the vendors of OpenCL code decided they did not want
to include the kernel source with their product, so instead
they created SPIR. An intermediate language which
translates OpenCL kernel code to LLVM IR instructions,
thus combining the portability of LLVM and the ease of
programming of OpenCL C. 1 has an example SPIR
code snippet. As you can see, it looks very much like
any LLVM IR with the addition of OpenCL metadata.

While using OpenCL kernels would be a very conve-
nient way to describe Halide functions in the IR level,
it would be very inconvenient to translate alternative
parallel models, such as OpenMP and MPI, to OpenCL
and SPIR respectively. We could potentially support a
SPIR-like model for describing Halide pipeline stages,
but that’s not the bigger picture here. The bigger picture
is that we require a Parallel IR which is compatible with
many different languages and different semantics, not
only OpenCL and Halide.

define spir_kernel wvoid

@sum( 132 %size,
float addrspace(l)x %vecl,
float addrspace(l)* %vec2

) nounwind {

<kernel LLVM IR code>

}

lopencl.kernels = !{!0}
lopencl.enable.FP_CONTRACT = !{}
lopencl.spir.version = !{!6}
lopencl.ocl.version = !{!7}
lopencl.used.extensions = !{!8}
lopencl.used.optional.core.features = !{!8}
lopencl.compiler.options = !{!8}
'0 = metadata !'{void (132, float addrspace (1) *,
float addrspace(l) x) * @sum,
metadata !1,
metadata !2,
metadata !3,
metadata !4,
metadata !5}
'l = metadata !{metadata !"kernel_arg_addr_space",
i32 0, i32 1, 1i32 1}
12 = metadata !{metadata !"kernel_arg_access_qual",
metadata !"none",
metadata !"none",
metadata !"none"}
'3 = metadata !{metadata !"kernel_arg_type",
metadata !"int",
metadata !"float«*",
metadata !"floatx+"}
'4 = metadata !{metadata !"kernel_arg_type_qual",
metadata !"const",
metadata !"",
metadata !""}
!5 = metadata !{metadata !"kernel_arg_name",
metadata !"size",
metadata !"vecl",
metadata !"vec2"}

Fig. 1. SPIR extends the LLVM IR to include OpenCL metadata. In
this SPIR code snippet, the OpenCL kernel sum is defined and it’s
arguments are passed through nested LLVM IR metadata.

B. SPIRE

SPIRE stands for Sequential to Parallel Intermediate
Representation, an IR which focuses on parallel runtimes
with sequential semantics similarly to Intel Cilk [3] and
Cray Chapel [7]. It is built on top of the PIPS IR, a much
simpler representation than the one LLVM uses. It would
be easy to port SPIRE into LLVM as it is very well
defined. There is a set of annotations that appear across
multiple parallel runtimes, such as parallel_for,
reduce, spawn, sync, lock and more. SPIRE has
it’s own versions of these annotations in the IR level.



MIT SUPERUROP 2015, JUNE 2015

forloop(i,1,n,1,
tlil =i,
parallel);
forloopii,1,n,1,
sumVal = sumVal+f (i},
reduced)

Vall = + reduce
1] £11),

Fig. 2. SPIRE version of forall and reduce, compared to the same
example in Cray Chapel

Figure 2 shows an example of a parallel for loop with a
reducer in Cray Chapel and its equivalent in the SPIRE
language. As you can see, all information regarding the
size of the loop, parallelization and variable management
(reducer) are lowered in the IR.

While SPIRE is very close to what we are looking
for, it suffers from the issue of being too general and
relaxed with the assumptions it makes. For example, both
MPI_Send and WriteBuffer of OpenCL are de-
scribed with the same SPIRE primitive, send. However,
the OpenCL WriteBuffer operation is synchronous
and the MPI MPI_Send primitive is asynchronous. So
then the equivalent SPIRE primitive, send, would have
to compromise the synchronicity of OpenCL without any
real reason to do so, or even worse, risk an ambiguous
implementation. In our implementation of a Parallel IR
for LLVM, we do not strive to cover every case of
parallel front-ends, but we strive for correctness. The
same code written in different parallel runtimes should
compile to the same LLVM Parallel IR and it’s runtime
execution should be predictable and deterministic.

C. Stanford Legion

A good candidate for a data-driven parallel semantics
front-end except Halide could be Stanford legion [5]. It
describes parallelism during data declarations and marks
memory regions as either read, concurrent read or write
enabled. Legion runs it’s own runtime scheduler and
is very effective in generating parallel and distributed
machine code. The parallel code can be run using the Le-
gion runtime, which schedules data-independent tasks to
multiple CPUs, GPUs with OpenCL as well as multiple
machines in a GasNET [9] distributed shared memory
system. We turned to Legion as it offers rich parallel
semantics and a good parallel and distributed scheduler,
something we will have to address when distributed
runtime capabilities get added to the Halide runtime.

D. PoCL

PoCL [4] stands for Portable CL, a project meant
to compile OpenCL code for any non-OpenCL back-
end supported by LLVM. What is interesting about this

project is that it compiles OpenCL kernel functions,
similar to Halide pipelines and it does that using parallel
loop annotations in the LLVM IR level. In fact, the paral-
lel loop annotations used first by PoCL have been a part
of the LLVM project since version 3.6. We used some
of the techniques used by PoCL to translate kernels into
parallel loops and also used their Parallel IR extensions
to annotate parallel loops coming from the Halide front-
end. Their parallel loop annotations annotate both the
returning branch of the loop as well as parallel loads and
stores inside the loop body, a necessary action needed to
eliminate loop-carried data dependencies.

III. TECHNICAL APPROACH
A. High level Design

Let’s consider the problem from a high level for a
bit without bothering with the implementation specific
details of LLVM. Our goal is, given an explicitly de-
clared parallel schedule coming from the programmer in
the Halide language, to statically determine the best loop
parallelization, parallel data distribution, loop ordering,
unrolling and vectorization. The dependence relations
between these different optimizations should be com-
pletely hierarchical as shown in figure 3, where the
leaves of the tree are vector instructions. Of course
data dependencies and loop-carried dependencies are
an obstacle to creating this hierarchy so they must be
resolved statically before a tree schedule such as the one
in figure 3 can be generated. The way we will address
the issue of loop-carried dependencies is by using the
same dependency solving optimizer used inside Polly
[2]. We can compile Polly as a dynamically linked library
and link it against the LLVM optimizer, in order to
include polyhedral dependency solving in LLVM.
Another issue with statically generating an optimization
tree such as the one in figure 3 is conditionals. A
conditional which depends on user supplied variables
can break our static schedule and inhibit performance for
two reasons. Not only due to the emptying of the whole
pipeline due to an unexpected branch, but also due to
our inability to vectorize across the boundaries of the
conditional. Here, our solution is to use the If converter
optimization, part of the auto-vectorization passes that
are included by default in LLVM, in order to predict the
branch and flatten the if statement so it doesn’t inhibit
our hierarchy. Now we will go into the implementation
details, of how we can statically get a loop schedule from
an arbitrary Halide schedule.

B. Parallel Loops

Our goal for this project is to build from the bottom
up, a Parallel IR for LLVM that satisfies the Parallel



MIT SUPERUROP 2015, JUNE 2015

l i | l

Serial For loop } Serial For loop ] Serial For loop }

Serial For loop }

Vector
Registers

Fig. 3. Manually optimizing parallel loops for performance yields
a structure like this. Given the right parallel semantics Halide can
generate such a schedule automatically.

for.body:
%0 = load 132% %arrayidx, align 4,
'l1lvm.mem.parallel_loop_access !0

store 132 %0, 132+ %arrayidx4, align 4,
!'1lvm.mem.parallel_loop_access !0

br il %exitcond,
label %for.end,
label %for.body,
!'11lvm.loop !0

for.end:

10 = metadata !{ metadata !0 }

Fig. 4. Simple parallel loop in the LLVM IR using
parallel annotations. It wuses both the 1lvm.loop and
llvm.mem.parallel_loop_access metadata types that

refer to the same loop identifier ! 0.

semantic requirements of Halide. Then run optimizations
on this statically generated IR before we begin Halide
specific runtime scheduling. So we started with parallel
loops, since in LLVM version 3.6 parallel for loop anno-
tations are included. In particular, LLVM uses two differ-
ent metadata to denote loop parallelization, 11vm. loop
and 1lvm.mem.parallel_loop_access. Figure
4 shows an example of a single parallel for loop,
compiled in the LLVM IR using the new parallel loop
annotations and metadata.

Initially, we modified the Halide front-end to translate
pipelines scheduled with the parallel () command
into parallel LLVM loops like the one in 4. This has lead
to a smaller code output, since now sequential and par-
allel loops are very similar, with only the 11vm. loop
and llvm.mem.parallel_loop_access meta-
data making them different. What you may notice is

outer.for.body:

%$vall = load 132, 1i32% %arrayidx3,
!'1lvm.mem.parallel_loop_access !2

br label %inner.for.body
inner.for.body:

$vall =

load i32, 132+ %arrayidxl,
'l1lvm.mem.parallel_loop_access !0

store 132 %valO, 132« %arrayidx2,
'1lvm.mem.parallel_loop_access !0
br il %$exitcond, label %inner.for.end,

label %inner.for.body,
'1lvm.loop !1

inner.for.end:

store 132 %vall, 132x %arrayidx4,
'l1lvm.mem.parallel_loop_access !2

br il %exitcond,
label %outer.for.end,
label %outer.for.body,
'1lvm.loop !2

outer.for.end:

o

= I'{!l, '2} ; a list of loop identifiers
17 = '{!I1} an identifier for the inner loop
12 = {12} ; an identifier for the outer loop
Fig. 5. Nested parallel loops in the LLVM IR using parallel

annotations. Notice how the number of metadata needed to describe
loop-carried dependencies increases with the nesting level.

that the metadata in figure 3 are self-referential. This
is done to ensure that metadata is distinct and unique in
the single parallel loop case. In the nested loops case, we
need to use linearly more metadata to denote dependency
relations. As you can see in figure 5, the nested metadata
o0 = !{!1, !2} is how loop-carried dependencies
are annotated. The variables which are marked by either
!'1 or !2 do not suffer from loop-carried dependencies,
while the ones marked with !0 are accessed inside
both loops. To solve loop-carried dependencies we will
use the polyhedral optimization framework Polly [2]
as a dynamically linked library to the default LLVM
optimizer. Other optimization passes that are needed are
explicitly declared using the LLVM flags. Most of the
ones we want are in the auto-vectorization collection
included by default with the latest LLVM version.



MIT SUPERUROP 2015, JUNE 2015

;oOi<N; i4+) |
= Db[i] + c[i];
I = alil+ dlil;
] = eli] + £[i];

c[1l:N+1] = e[0:N] + f£[0:N];
for (i=0; i<N; i++) {
alil = bl[i] + c[i];
bli+l] = al[i] + d[i];
}

Fig. 6. Demonstration of our dependency elimination algorithm.
Statements (1) and (2) form a strongly connected component and are
thus executed sequentially. Statement (3) is vectorizable. Applying
the steps (2)-(4) of the algorithm produce the second simplified
graph. Step (5) produces the final vectorized code. We are using
square brackets notation to demonstrate parallelism.

C. Fine-Grain Parallelism

There are two classic techniques for extracting fine-
grain parallelism, vectorization and software pipelining.
Researchers first developed vectorizing technology for
vector supercomputers such as the Cray-1 [10]. More
recently, compiler engineers have adopted it for com-
pilation to multimedia extensions. Vectorization iden-
tifies and extracts data parallelism, which implies the
ability to safely execute the same operation on multi-
ple data elements concurrently. Vectorization converts
a sequential loop into a parallel version that utilizes
a processor’s vector instruction set.This transformation
involves a substantial reordering of operations; seman-
tically, a vector instruction computes multiple values
before committing any of the results.Vectorization is
only legal if it preserves dependencies in the original
loop. As a result, it relies heavily on the ability to
accurately characterize dependencies among operations.
A straightforward reaching-definitions data-flow analysis
uncovers dependencies between scalar variables. The pri-
mary difficulty therefore, is the accurate identification of
dependencies among memory operations. A simple ap-
proach that conservatively assumes dependence between
any load and store almost always prevents vectorization.
Instead of creating new metadata to mark vectoriz-
able loops, we decided to use the existing meta-
data used to track loop-carried dependencies, which is

llvm.mem.parallel_loop_access and we used
it before for parallel loop annotation. Using the metadata
lists that we saw in figure 5 we can infer where a loop-
carried dependency may exist.

After identifying dependencies we created an algorithm
for solving them. The basic steps for vectorizing a nested
loop are the following:

1) Create data-dependence graph for the loop body.
Nodes represent statements in the inner loop and
edges denote dependencies between statements.

2) Identify cycles in the graph using Tarjan’s al-
gorithm for strongly connected components [11].
Statements involved in a dependence cycle must be
executed sequentially. The rest are vectorizable.

3) Partition the graph into pi-nodes, where each clus-
ter represents a strongly connected component,
and remove edges contained within clusters. The
resulting graph is acyclic.

4) Run a topological sort algorithm on the graph to
determine a valid pi-node ordering.

5) For each vectorizable node, emit a vectorized state-
ment. Otherwise, replace it with a sequential loop
to execute all operations in the original program
order.

For example, consider the simple for loop in figure
6 and see how the above algorithm is applied to isolate
vectorizable operations from serial execution code.
Notice that the vector operations execute first, even
though the originating scalar statement appears later
in the source loop. This reordering is a result of the
topological sort, executed in step (4) of our algorithm.
Also note that in figure 6, the final version of the
vectorized code is only a symbolic representation of the
actual machine code that will be executed. We first have
to apply strip-mining given the width of vector registers
in the given system. The traditional vectorization
algorithm isolates vector and scalar computations in
separate loops. We can prevent that by performing an
optimization technique called loop fusion [12] to merge
loops of the same type when the dependencies allow it.

IV. RESULTS

In our results we will show that by lowering parallel
loops to the IR level and using Polly on the new IR,
we can achieve a speedup of 1.6x-8x depending on
the Polly flags used. The results of our out-of-order
vectorization algorithm with strongly-connected compo-
nents are also positive and show a speedup of 1.5x-
2x. Both those optimizations where made possible by
propagating parallelism to the level of the optimizer. We



MIT SUPERUROP 2015, JUNE 2015

Speedup
L= e L L = I =« B ¥ =
T

Clap, 9o, e
Yo, s{_% Tagy
th

Fig. 7. Optimizing float matrix multiplication in Halide with Parallel
Loops IR and Polly, clang 2.8, GCC 4.5 on Intel Core”™™ i5 CPU at
2.40GHz

have divided our results in two categories. One is the
results obtained by polyhedral optimizations in parallel
loops using Polly and our Parallel Loop IR. The other is
the results obtained from out-of-order vectorization and
fined-grained parallelism.

A. Parallel Loops with Polly

To benchmark Halide with our Parallel Loops IR and
Polly, we wrote a simple floating-point matrix multi-
plication algorithm in Halide, compiled it to LLVM
IR together with our Parallel Loops annotations and
then passed it to Polly with a variety of optimization
flags. The options we tried were; Polly, Polly with
Strip Mining enabled, Polly with it’s own vectorization
algorithm enabled, Polly with hoisting and finally Polly
with loop unrolling, which had the biggest speedup
compared to clang and GCC in the O3 level, which we
used as our base measurements. As you can see in figure
9, different optimization levels of Polly yield different
results, with the best in terms of performance being
Polly with the loop unrolling flags enabled. Do not be be
alarmed by the fact that Polly, with its own vectorization
scheme is only 2x faster in terms of performance. Our
parallel loops are both polyhedral optimized, unrolled
and vectorized using our own algorithm, so we expect to
see a greater performance increase than the fastest Polly
implementation, which is Polly with loop unrolling. This
is because Halide does loop unrolling as part of its
runtime optimizations. In the future maybe it would
beneficial to try and move loop unrolling in the compile
phase of Halide, so it happens statically and before-the-
fact.

B. Out-of-Order Vectorizer

To benchmark our Out-of-Order vectorization algo-
rithm, we run a series of parallel benchmarking tests

| Benchmark | Source [ Description \
093.nasa7 CFP92 7 kernels used in NASA applications
125.turb3d | CFP95 Turbulence modeling
301.apsi CFP2000 | Meteorology: pollutant distribution
146.wave5 CFP95 Maxwall’s equations
103.su2cor | CFP95 Monte-Carlo method
172.mgrid CFP2000 | Multi-grid solver: 3D potential field
101.tomcatv | CFP95 Vectorized Mesh Algorithm

Fig. 8. Benchmark algorithms we evaluated out-of-order vectoriza-
tion against.

1.941.941-981 931.97 4,1.971,951.99

0‘93 25 0 7 gg o 72

g,

! 0,
g5 'ty -4, ) 7 T 7
'3 % 0g, L’ -8, ; g,
7 o W e ‘ch, fﬁ'r,o, e, .

& Ivm auto-vectorizer B our out-of-order vectorizer

Fig. 9. Speedup of the Out-of-order vectorizer compared to the stock
LLVM auto-vectorizer.

which are openly available on the internet. In figure 8
you can see a short explanation of what algorithm
each benchmark evaluates against. Then we compare
the results of our algorithm with the stock LLVM auto-
vectorization algorithm. In all cases, our out-of-order
vectorization algorithm that uses parallel loop and loop-
carried dependency annotations, is faster than the stock
LLVM auto-vectorizer. The performance speedup we
observed was 1.6x-2x compared to non-vectorized code
and an average of 1.2x better than the LLVM auto-
vectorizer. You can see how our vectorizer evaluated
against the LLVM one in figure 9. The x-axis includes
all the different benchmarks evaluated, as shown in
figure 8. The y-axis measures the calculated speedup
of the benchmark, compared to the stock LLVM auto-
vectorizer for scale.



MIT SUPERUROP 2015, JUNE 2015

V. DISCUSSION

The performance increase from lowering parallel
loops to the level of the optimizer is staggering. We
applied two different optimization passes on top of our
Parallel IR metadata. One was the Polly polyhedral
optimization framework and the other was our own
out-of-order vectorizer. In the first case we saw a
performance increase of 2x-8x in a standard matrix
multiplication benchmark written in Halide. Writing the
matrix multiplication algorithm in Halide was much
easier, due to Halide’s kernel-like parallel semantics and
also faster than writing hand-optimized code. This is
another proof that performance optimization should be
the job of the compiler and not the programmer. Keeping
track of all memory hierarchies and communications
is a tedious task and programmers rarely ever explore
the set of possible memory arrangements and schedules
for any given algorithm. On the other hand, Halide
using auto-tuning [13] can test many different memory
configurations and schedules before deciding on the
best one, by incorporating a metric in the performance
search space. This way, the search for an optimal
memory configuration and scheduling can converge to
a near-optimal one multiple orders of magnitude faster
than a human could by trial and error.

So why does LLVM not know about parallelization
in the IR level already. There are hundreds of parallel
front-ends and runtimes for LLVM, such as Intel cilk
[3], pthreads [14], OpenMP [15], MPI [16], UPC [17],
with different specifications and features. Creating one
intermediate representation that successfully describes
all of these is hard. Some efforts have been made in
that direction, as we saw with SPIRE [8] but they end
up generalizing the execution model or resulting in
an ambiguous execution schedule. Parallel loops are
something almost all parallel runtimes share, so even
if we are not ready to lower all parallelism to the
IR, we can feel confident propagating parallel loops
to the optimizer level. Due to the lack of a common
Parallel IR all runtimes can speak to, most parallel IR
code generated by an LLVM based front-end results
in function calls to handle parallelism during runtime.
By having the explicit parallelism information in the
optimizer level we can schedule code execution statically
before runtime, yielding a performance speedup, as long
as all loop-carried dependencies have been resolved
either by Polly or by our out-of-order vectorizer.

When resolving loop-carried dependencies across
multiple levels of nested parallel for loops the schedule
space increases exponentially with every level. This
is another reason why manually searching through

the solution space is inefficient. The in-degree of
the dependency graph seen in figure 6 increases
exponentially with the level of nesting and in many
applications this is prohibiting in terms of manual
performance optimization. We have showed that by
lowering explicit loop parallelism and using auto-tuning
as a metric to explore this space, we can achieve a
near-optimal performance automatically.

Loop-carried dependencies also affect the speedup
observed by vectorization. The LLVM auto-vectorizer
we evaluated against doesn’t currently use the
llvm.mem.parallel_loop_access metadata
to predict loop-carried dependencies and thus tries
to guess these relationships, resulting in a lower
performance compared to our out-of-order vectorizer.
The performance increase was a speedup of 1.2x
compared to LLVM, while our vectorization algorithm
is simpler. The reason we can get better performance
with a weaker algorithm is the propagation of parallel
dependencies, which can be solved statically and
before-the-fact, reducing the time needed for runtime
optimization.

The next obvious step would be to combine parallel
loop optimizations with Polly and our out-of-order
vectorizer to create a single pass that is aware of
both thread-level parallelization as well as SIMD
parallelization. This way we can go deeper in the
possible solution space, comparing different memory
configurations that schedule loops in a parallel runtime
such as OpenMP [15] and executes the leaves in the
optimization tree (figure 3 using vector instructions,
scheduled by our out-of-order optimizer. We can do that
by porting our out-of-order vectorization algorithm into
Polly and replacing the current vectorization algorithm,
while maintaining the effectiveness of other techniques
such as loop unrolling and hoisting, in order to get
results even greater than the ones shown in figure 7.
The same way we optimized parallel code to run
across threads, we can extend our scheduler with a
distributed runtime such as GasNET [9] or Legion [5]
to schedule tasks across machines. In that case, the
basic principles of generating memory configurations
and auto-tuning to find the best one, can also apply in
a distributed shared memory environment. There has
been a lot of work in generating a dynamic distributed
scheduler but not with great results. Our scheduler
is static, which means it will have to find the ideal
memory arrangement across machines and caches
before getting an input or input size. To do that, we will
again resolve to the LLVM IR to annotate distributable
code similarly to how we annotated parallelizable
loops. This way, we can have a general parallel and



MIT SUPERUROP 2015, JUNE 2015

ImageParam input (UInt (32), 1);

Func blur_x("blur_x");
Var x("x");

//1D blur

blur_x(x) = (input(x) +

input(x + 1) +
input (x + 2)) / 3;

// schedule

blur_x.distributed (x)
.parallel (x)
.vectorize (x);

Fig. 10. Explicit distributed and parallel scheduling example in
Halide for a one-dimensional array blur filter

distributed schedule or many general schedules, which
will be auto-tuned during runtime provided the input
size. The only difference between our scheduler, which
optimizes around parallel threads, memory and vector
instructions as seen in figure 6 and a static distributed
scheduler, would be another level in the optimization
tree above the parallel loop level, which we will call
distributed loop. Please note here that this scheduler
will not be capable of generating distributed schedules
automatically, before receiving the Halide schedule
from the programmer. An example of a distributed
Halide schedule can be found in figure 10, notice how
the programmer can explicitly declare the hierarchy of
optimizations, calling distributed (blur_x)
first, then parallel (blur_x) and finally
vectorize (blur_x). If you notice our optimization
tree in figure 6 you can see how a Halide schedule can
easily be transformed in an optimization tree, as long
as memory dependencies and loop-carried dependencies
are resolved.

VI. CONCLUSION

By lowering parallelization from the Halide front-
end to the LLVM IR level we can statically generate
parallel IRs. These representations are then optimized
using the Polly polyhedral optimization framework and
our own out-of-order vectorizer, before runtime. During
runtime, Halide can schedule parallel loops better, since
it knows everything about their size, scope and loop-
carried dependencies, and generate a parallel execution
tree. This creates a performance increase of 2x-8x for
the Polly polyhedral optimizer and 1.2x-1.6x for the
out-of-order vectorizer. Combining these two techniques
we can get a theoretical performance gain of up to
10x. In conclusion, propagating high level parallelism to
the lower levels of the compiler can offer performance

benefits. In the future, distributed annotations will also
be added to the LLVM IR, to add another level to the
optimization tree and making it possible to run high-
level, high-performance, distributed, image processing
code. We have shown that taking away the responsibility
of memory arrangement, communication, loop unrolling,
parallelizing and vectorizing from the programmer and
giving it to the compiler can yield staggering perfor-
mance increases. In the future, we would like to include
more metadata to the LLVM IR, making it possible to
express rich parallel semantics in the lowest levels of the
compiler.

VII. ACKNOWLEDGMENTS

I would like to thank my Research Advisor Saman
Amarasinghe, for allowing me to work on the things
that I like and for providing constant guidance and
turning me to the right direction whenever that was
needed. I would also like to thank Research Scientist
Shoaib Kamil, for providing me with guidance even
in low-level implementation details and for teaching
me everything I know about compilers. I would also
like to thank MIT and CSAIL, for providing a space
where ideas can flourish, as well as the SuperUROP
program, that allowed me to go further down the road
of research before even getting my degree. I hope more
students will benefit from that program in the future and
more departments will offer such opportunities to their
undergraduates.

REFERENCES

[1] Ragan-Kelley, Jonathan, et al. "Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image
processing pipelines.” ACM SIGPLAN Notices 48.6 (2013): 519-
530.

[2] Grosser, Tobias, et al. Polly-Polyhedral optimization in LLVM,
Proceedings of the First International Workshop on Polyhedral
Compilation Techniques (IMPACT). Vol. 2011. 2011.

[3] Blumofe, Robert D., et al. Cilk: An efficient multithreaded
runtime system. Vol. 30. No. 8. ACM, 1995.

[4] Jskelinen, Pekka, et al. ”pocl: A performance-portable OpenCL
implementation.” International Journal of Parallel Programming
(2014): 1-34.

[5] Bauer, Michael, et al. "Legion: expressing locality and inde-
pendence with logical regions.” Proceedings of the international
conference on high performance computing, networking, storage
and analysis. IEEE Computer Society Press, 2012.

[6] Chang, Chen-Ting, et al. ”A translation framework for automatic
translation of annotated LLVM IR into OpenCL Kernel function.”
Advances in Intelligent Systems and Applications-Volume 2.
Springer Berlin Heidelberg, 2013. 627-636.

[7] Chamberlain, Bradford L., David Callahan, and Hans P. Zima.
“Parallel programmability and the chapel language.” Interna-
tional Journal of High Performance Computing Applications 21.3
(2007): 291-312.

[8] Khaldi, Dounia, et al. "The Incremental Design of Parallel
Compiler Intermediate Representations using SPIRE.”



MIT SUPERUROP 2015, JUNE 2015

[9] Bonachea, Dan. "GASNet Specification, v1. 1.” (2002).

[10] Russell, Richard M. ”"The CRAY-1 computer system.” Commu-
nications of the ACM 21.1 (1978): 63-72.

[11] Tarjan, Robert. “Depth-first search and linear graph algorithms.”
SIAM journal on computing 1.2 (1972): 146-160.

[12] Kennedy, Ken, and Kathryn S. McKinley. Maximizing loop
parallelism and improving data locality via loop fusion and
distribution. Springer Berlin Heidelberg, 1994.

[13] Ansel, Jason, et al. "Opentuner: An extensible framework for
program autotuning.” Proceedings of the 23rd international con-
ference on Parallel architectures and compilation. ACM, 2014.

[14] Nichols, Bradford, Dick Buttlar, and Jacqueline P. Farrell.
”Pthreads programming.” (1998).

[15] Dagum, Leonardo, and Ramesh Menon. ”OpenMP: an industry
standard API for shared-memory programming.” Computational
Science & Engineering, IEEE 5.1 (1998): 46-55.

[16] Gropp, William, et al. ”A high-performance, portable im-
plementation of the MPI message passing interface standard.”
Parallel computing 22.6 (1996): 789-828.

[17] UPC Consortium. “UPC language specifications v1. 2.
Lawrence Berkeley National Laboratory (2005).

Lefteris Ioannidis Lefteris loannidis is a student in the Electri-
cal Engineering and Computer Science department of MIT and a
SuperUROP researcher in the COMMIT group of CSAIL. He has
research work in Compilers and Programming Languages, Computer
Architecture and Systems. He will be graduating from MIT in 2016
with an M.Eng in Computer Systems.

10



